US009430220B2

United States Patent

(12) 10) Patent No.: US 9,430,220 B2
Wist et al. 45) Date of Patent: Aug. 30,2016
(54) METHOD, MEDIUM, AND APPARATUS FOR 6,138,059 A * 10/2000 Ozeki ....ccccovvvvernn. G11C7(5)/1 1/‘1‘
RE-PROGRAMMING FLASH MEMORY OF A
6,505,105 B2* 1/2003 Allen et al. ................. 701/33.1
COMPUTING DEVICE 6,772,276 B2*  8/2004 DOVEr .......oo..... GLIC 16/102
711/103
(71) Applicant: GM GLOBAL TECHNOLOGY 6775423 B2* 82004 Kulkarni ................ GOGF 8/665
H 382/305
OPERATIONS LLC, Detroit, MI (US) 6,865,736 B2* 3/2005 Holmberg et al. .......... 717/158
(72) Inventors: Alan D. Wist, Macomb, MI (US); 7,047,128 B2 5/2006 Dudel et al.
Ansaf I. Alrabady, Livonia, MI (US) 7,155,324 B2  12/2006 Blazic et al.
’ ’ 7,330,960 B2*  2/2008 Niles ...c...cccoocoenrens GO6F 3/0608
(73) Assignee: GM GLOBAL TECHNOLOGY 711/170
OPERATIONS LLC, Detroit, MI (US) 7,333,005 B2*  2/2008 Daghan et al. ............ 340/426.3
(*) Notice:  Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 25 days.
. Intelligent Communication for Future Automobile Networks by
(21)  Appl. No.: 14/338,193 Radovan Miucic Dissertation Submitted to the Graduate School of
(22) Filed: Jul. 22, 2014 Wayne State University, Detroit, Michigan—2009.*
(65) Prior Publication Data (Continued)
US 2016/0026458 Al Jan. 28, 2016 Primary Examiner — Francisco Aponte
(51) Imt. ClL 74) Attorney, Agent, or Firm — Ingrassia Fisher & Lorenz,
Y, A g
GOG6F 9/44 (2006.01) P.C.
GOG6F 9/445 (2006.01)
(52) US.CL (57) ABSTRACT
CPC .coveeee GOG6F 8/665 (2013.01); GOGF 8/68 A method of re-programming flash memory of a computing
(2013.01) device is presented here. Software content having a pluralit
p gap y
(58) Field of Classification Search of software modules can be re-programmed by identifying,
CPC ............ GO6F 8/665; GOGF 8/68; GOG6F 8/71; from the software modules, a first set of software modules
GOGF 12/0246; GOGF 2015/766; GOGF to be programmed by delta programming and a second set of
2212/2022; GOG6F 2212/7206; GO6F software modules to be programmed by non-delta program-
2212/7208 ming. A first set of sectors of the flash memory is assigned
USPC et 717/168  for programming the first set of software modules, and a
See application file for complete search history. second set of sectors is assigned for programming the
second set of software modules. At least some of the second
(56) References Cited set of sectors are designated as temporary backup memory
space. The first set of sectors is programmed with the first set
U.S. PATENT DOCUMENTS of software modules, using delta programming and the
designated temporary backup memory space. After pro-
4,956,777 A : 9/1990 Cearley et al. ......cccoo...... 701/24 gramming the first set of sectors, the second set of sectors is
5,901,330 A 5/1999 SUN s G06F7%6/§ programmed with the second set of software modules, using
5974528 A * 10/1999 Tsai wooooooererrivccennen GooFg/66s ~ non-delta programming.
710/14 12 Claims, 4 Drawing Sheets

the next st

Initiate deka programming of

re moduls
706

Save the existing pi
for the software
sectors designated as the
temporary backup memory space

ram code
ule in the

708

Use the delta program file to
re-program the sectors assigned
to the software module, in
accordance with a delta
programming technique

Replace the existing program
cods in the sectors designated
25 the temporary backup memory
space with the new program code
for the last software module




US 9,430,220 B2

Page 2
(56) References Cited 2009/0113386 Al* 4/2009 Ekeretal .......... 717/108
2009/0204747 Al* 82009 Lavan ... GOGF 12/0246
U.S. PATENT DOCUMENTS 711/103
2009/0300275 Al* 12/2009 Murakami ............ GI11C 11/413
7,366,589 B2 4/2008 Habermas . 711/103
7,877,562 B2*  1/2011 Mukaida .....cccocovrenenenn. 711/162 2011/0029726 Al1* 2/2011 Fujimoto .................. 711/103
7,886,141 B2* 2/2011 . GO6F 8/665 2013/0111212 A1l 5/2013 Baltes et al.
713/1 2013/0111271 A1* 5/2013 Baltes et al. ................. 714/38.1
8,001,385 B2* 82011 Rudelic oovvevvevrerreerenne. 713/176 2014/0032916 Al 1/2014 Costin et al.
8,296,535 B2* 10/2012 Eker et al. ... 711162 2014/0075094 Al 3/2014 Alrabady et al.
8,341,513 B1* 12/2012 Lattyak et al. . 715/229 2014/0075197 Al 3/2014 Alrabady et al.
8,549,271 B1* 10/2013 Joshi weevevveevevreererreea. GOG6F 8/65 2014/0075517 Al 3/2014 Alrabady et al.
713/1 2014/0281122 Al1* 9/2014 Lieber ....ccccovvvvevennrnnn, 711/103
8,650,167 B2*  2/2014 Sim-Tang .............. 707/694 2015/0006066 Al1* 1/2015 Stevens 02D 41/2451
8,655,541 B2*  2/2014 You, IT ..cccccoovvrnnnne. HO4L 67/34 701/115
340/438 2015/0154086 Al* 6/2015 Rabeler et al. ............... 717/168
8,683,206 B2 3/2014 Sarkar et al.
8688313 B2* 42014 Margol ..ooooccrrorrn. GOGF 8/61 OTHER PUBLICATIONS
8.813.061 B2* 82014 Hoffman et al. ... 770117//31162 Remote Incremental Linking for Energy—FEfficient Reprogram-
2004/0062130 AL*  4/2004 Chiang ... 36523003  ming of Sensor Networks; Joel Koshy and Raju Pandey— Depart-
2007/0079053 Al* 4/2007 Sawa et al. ... 711/100 ment of Computer Science University of California—2005—
2007/0101096 Al*  5/2007 Gorobets . . 7117203 [ERE*
2007/0185624 Al*  &2007 Duddles .....cc.cc.co. GOGF %61% Efficient reprogramming of wireless sensor networks using incre-
2007/0192532 Al* 82007 Ogle 711/103 mental updates and data compression—Milosh Stolikj, Pieter J. L.
2008/0133823 Al* 6/2008 Laichinger et al. ........ 711/103  Cuijpers, Johan J. Lukkien—Eindhoven University of Technology
2008/0222368 Al*  9/2008 GEhrfnaANn .....oooooer. 711/152 Department of Mathematics and Computer Science System Archi-
2009/0077267 Al 3/2009 Alrabady et al. tecture and Networking Group—May 2012.*
2009/0113166 A1* 4/2009 Houston ............. GOGF 11/1068

711/216

* cited by examiner



U.S. Patent Aug. 30, 2016 Sheet 1 of 4 US 9,430,220 B2

104~ 106~ ~108
ROM RAM Momary
102~
Microprocessor
110~ ~112
/0 Comm
Module Module

FIG. 1



U.S. Patent Aug. 30, 2016 Sheet 2 of 4 US 9,430,220 B2

N < ©
o o o
N N N
e — ~——"
(Ve
O
LL.
o
=]
N
o =
o o
~N N
e e N V__/\_,_\
I
ol | N .
|
NS o
L.
o
&
o <
o o
~ Y
s — ~——"—
0.0
(op]
NEISIE
|| ~—
RNl ol | e O
“ )
o &
o
~
N ©
o o
N N
XX X e
o
N :
P o
% )




U.S. Patent Aug. 30, 2016 Sheet 3 of 4 US 9,430,220 B2

600~
( Initialization )
602~ v
Obtain software update package for the ECU
604~ v

|dentify software modules to be programmed by delta programming

606~ T

Identify software modules to be programmed by
non-delta (traditional) programming

608~ v
Assign flash sectors for programming the software modules
610~ v
Determine the maximum sector size for the software
modules to be programmed by delta programming
612~ v

Designate the flash sectors assigned to one of the
software modules as temporary backup memory space

FIG. 6



U.S. Patent Aug. 30, 2016 Sheet 4 of 4 US 9,430,220 B2

~1700
( Flash re-progamming )

102

Y
Obtain the delta program file

v 104

Initiate delta programming of
the next sottware module

v 106

Save the existing program code
for the software module in the
sectors designated as the
temporary backup memory space

y 108

Use the delta program file to
re-program the sectors assigned
to the software module, in
accordance with a delta

Y

programming technique
710
No_~"Done
?
Yes

112

Obtain the new program code for
the last software module

v 114

Initiate non-delta programming
of the last software module

| ~716

Replace the existing program
code in the sectors designated
as the temporary backup memory
space with the new program code
for the last software module

FIG.7



US 9,430,220 B2

1

METHOD, MEDIUM, AND APPARATUS FOR
RE-PROGRAMMING FLASH MEMORY OF A
COMPUTING DEVICE

TECHNICAL FIELD

Embodiments of the subject matter described herein relate
generally to electronic control systems and electronic con-
trol units (ECUs) of the type used in vehicles. More par-
ticularly, embodiments of the subject matter relate to pro-
gramming techniques for re-programming the flash memory
of ECUs.

BACKGROUND

Modern motor vehicles provide many software-controlled
features or functions to accommodate the needs and desires
of drivers and passengers and to comply with the regulations
of governmental agencies. Such features are generally con-
trolled by software programmed into various modules or
electronic control units (ECUs) located at different places
within the vehicle. The ECUs and the signal paths to and
from the ECUs and the hardware devices they control can be
thought of as forming a high-speed computer network that is
included within the vehicle. Each ECU includes software for
its particular vehicle system, such as application software to
perform various control functions, and associated calibration
software to configure the application software. From time to
time, the ECU software is updated to reflect software
improvements, to enable or disable user preferences, and/or
to patch or correct the existing software. Updating the ECU
software typically involves reflashing the program code
stored in flash memory to replace the existing software
modules with new software modules.

For various reasons, it can be burdensome for ECU
suppliers to preprogram ECUs to suit the needs and speci-
fications of the vehicle manufacturers. Accordingly, some
ECU suppliers now provide the vehicle manufacturer with
generically programmed ECUs, which are later re-pro-
grammed with the vehicle-unique ECU software by the
vehicle manufacturer. Such re-programming may require
reflashing the preexisting program code provided by the
ECU suppliers.

The increasing use of ECUs and the number of software
programs used by ECUs has prompted ECU vendors and
vehicle manufacturers to investigate the use of efficient and
economic flash programming techniques. Nonetheless, there
remains a need and desire to have an improved methodology
for re-programming ECUs in vehicles. Furthermore, other
desirable features and characteristics will become apparent
from the subsequent detailed description and the appended
claims, taken in conjunction with the accompanying draw-
ings and the foregoing technical field and background.

BRIEF SUMMARY

A method of re-programming flash memory of a comput-
ing device with software content is disclosed herein. The
software content includes a plurality of software modules,
and an exemplary embodiment of the method begins by
identifying, from the software modules, a first set of soft-
ware modules to be programmed by delta programming and
a second set of software modules to be programmed by
non-delta programming. The method proceeds by assigning
a first set of sectors of the flash memory for programming
the first set of software modules, and a second set of sectors
of the flash memory for programming the second set of

15

20

35

40

45

55

2

software modules. The method continues by designating at
least some of the second set of sectors as temporary backup
memory space, and by programming the first set of sectors
with the first set of software modules, using delta program-
ming and the designated temporary backup memory space.
After programming the first set of sectors, the second set of
sectors is programmed with the second set of software
modules, using non-delta programming.

Also disclosed herein is a tangible and non-transitory
computer readable medium having computer executable
instructions stored thereon and capable of performing a
method when executed by a processor. The method per-
formed by the instructions identifies, from a plurality of
software modules, a first set of software modules to be
programmed into a flash memory by delta programming and
a second set of software modules to be programmed into the
flash memory by non-delta programming. A first set of
sectors of the flash memory is assigned for programming the
first set of software modules, and a second set of sectors of
the flash memory is assigned for programming the second
set of software modules. At least some of the second set of
sectors are designated as temporary backup memory space.
The first set of sectors is programmed with the first set of
software modules, using delta programming and the desig-
nated temporary backup memory space. After programming
the first set of sectors, the second set of sectors is pro-
grammed with the second set of software modules, using
non-delta programming.

An electronic control unit for a vehicle is also disclosed.
An exemplary embodiment of the electronic control unit
includes a processor architecture having at least one pro-
cessor device, a flash memory to store program code rep-
resenting a plurality of software modules, and computer
readable media having computer-executable instructions
stored thereon. When executed by the processor architec-
ture, the instructions cause the electronic control unit to:
initiate re-programming of the flash memory with a first
software module and a second software module; obtain a
delta program file associated with the first software module;
delta program a first set of sectors of the flash memory with
the first software module, using the delta program file and
using a second set of sectors allocated for the second
software module as temporary backup memory space; and
after delta programming the first set of sectors, program the
second set of sectors with the second software module, using
non-delta programming.

This summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the detailed description. This summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the subject matter may
be derived by referring to the detailed description and claims
when considered in conjunction with the following figures,
wherein like reference numbers refer to similar elements
throughout the figures.

FIG. 1 is a simplified schematic representation of an ECU
that is suitable for use in a vehicle;

FIG. 2 is a diagram of a flash memory element pro-
grammed with existing software modules;

FIG. 3 is a diagram of the flash memory element shown
in FIG. 2, depicted in a state during a reflashing operation;



US 9,430,220 B2

3

FIG. 4 is a diagram of the flash memory element shown
in FIG. 2, depicted in a state near the end of a reflashing
operation;

FIG. 5 is a diagram of the flash memory element shown
in FIG. 2 after completion of a reflashing operation;

FIG. 6 is a flow chart that illustrates an exemplary
embodiment of an initialization process associated with a
flash re-programming operation; and

FIG. 7 is a flow chart that illustrates an exemplary
embodiment of a flash re-programming process.

DETAILED DESCRIPTION

The following detailed description is merely illustrative in
nature and is not intended to limit the embodiments of the
subject matter or the application and uses of such embodi-
ments. As used herein, the word “exemplary” means “serv-
ing as an example, instance, or illustration.” Any implemen-
tation described herein as exemplary is not necessarily to be
construed as preferred or advantageous over other imple-
mentations. Furthermore, there is no intention to be bound
by any expressed or implied theory presented in the preced-
ing technical field, background, brief summary or the fol-
lowing detailed description.

Techniques and technologies may be described herein in
terms of functional and/or logical block components, and
with reference to symbolic representations of operations,
processing tasks, and functions that may be performed by
various computing components or devices. Such operations,
tasks, and functions are sometimes referred to as being
computer-executed, computerized, processor-executed, soft-
ware-implemented, or computer-implemented. It should be
appreciated that the various block components shown in the
figures may be realized by any number of hardware, soft-
ware, and/or firmware components configured to perform
the specified functions. For example, an embodiment of a
system or a component may employ various integrated
circuit components, e.g., memory elements, digital signal
processing elements, logic elements, look-up tables, or the
like, which may carry out a variety of functions under the
control of one or more microprocessors or other control
devices.

When implemented in software or firmware, various
elements of the systems described herein are essentially the
code segments or executable instructions that, when
executed by one or more processor devices, cause the host
computing system to perform the various tasks. In certain
embodiments, the program or code segments are stored in a
tangible processor-readable medium, which may include
any tangible medium that can store or transfer information.
Examples of suitable forms of non-transitory, tangible, and
processor-readable media include an electronic circuit, a
semiconductor memory device, a ROM, a flash memory, an
erasable ROM (EROM), a floppy diskette, a CD-ROM, an
optical disk, a hard disk, or the like.

The techniques and technologies described here can be
deployed with any vehicle, including, without limitation:
road vehicles such as cars, buses, trucks, and motorcycles;
aircraft; watercraft; spacecraft; trains; subways; specialty
equipment (e.g., construction equipment, factory equipment,
etc.); trams; and the like. The particular embodiments
described below relate to vehicle applications, however, the
subject matter is not limited or restricted to such vehicle
applications.

The subject matter described here relates to an efficient
and cost-effective flash programming technique that utilizes
delta programming to store program code in the flash

10

15

20

25

30

35

40

45

50

55

60

65

4

memory element of an ECU of a vehicle. Delta program-
ming can be performed in a failsafe manner without signifi-
cantly increasing ECU cost or complexity. As is well under-
stood by those familiar with software programming, and
flash memory architectures, delta programming is an effi-
cient way of updating, changing, or revising existing soft-
ware content, which may represent program code, calibra-
tion data, or the like. In this regard, delta programming
focuses on the differences between existing (pre-pro-
grammed) software content and new software content that is
intended for installation. In accordance with delta program-
ming techniques, a delta program file can be created to
represent the differences between two software versions.
Thus, the new software content in its entirety need not be
sent to the target ECU. Consequently, if only minor changes
are needed, then delta programming can result in less
overhead, and quick installation.

Delta programming can be performed in a failsate manner
to ensure that programming interruptions do not result in an
unrecoverable state. To this end, conventional delta pro-
gramming techniques may utilize additional nonvolatile
memory (e.g., flash memory) that is only used during
programming (i.e., the additional memory is not used during
normal operation of the ECU after reflashing). Depending
on the update strategy, the additional memory may be used
as a backup area to store some of the previous version of the
software content, as a scratchpad to store the currently
reconstructed flash sectors, or as a temporary area to store
the update and status information while the new version is
being written to the flash memory. Thus, the previous
version of the software content can be recovered if needed.
Although this approach is effective, it increases the cost and
complexity of the ECU.

The technique presented here employs delta programming
in a failsafe manner without significantly increasing ECU
cost or complexity. As described in more detail below, the
desired software content is divided into identifiable software
modules. Some of the software modules are re-programmed
using delta programming. Thereafter, one or more remaining
software modules are re-programmed using a traditional or
non-delta methodology. During the delta programming
phase, a portion of the flash memory that is reserved for the
non-delta programming modules is used as a temporary
buffer when constructing the final image for the modules that
are updated during this phase. During the non-delta pro-
gramming phase, the reserved flash sectors are written with
the remaining software module(s) using traditional tech-
niques (e.g., raw binary, compressed image, or the like).

FIG. 1 is a simplified schematic representation of an ECU
100 that is suitable for use in a vehicle. Modern vehicles may
include multiple ECUs 100, each suitably configured to
perform certain designated functions and operations
onboard the vehicle. The illustrated embodiment of the ECU
100 generally includes, without limitation: a processor
architecture having at least one processor device (such as a
microprocessor 102); read-only memory 104; random
access memory 106; flash memory 108; an input/output
module 110; and a communication module 112. In practice,
the ECU 100 may include additional elements, devices, and
functional modules that cooperate to achieve the desired
functionality.

The processor architecture of the ECU 100 is capable of
executing program code instructions that cause the ECU 100
to perform a variety of techniques, operations, and func-
tions, including those described in more detail below.
Although FIG. 1 depicts a microprocessor 102, which is a
preferred implementation, the ECU 100 may employ any



US 9,430,220 B2

5

number of discrete processor devices, content addressable
memory, digital signal processors, application specific inte-
grated circuits, field programmable gate arrays, any suitable
programmable logic device, discrete gate or transistor logic,
discrete hardware components, or any combination designed
to perform the functions described here. Moreover, a pro-
cessor device utilized by the ECU 100 may be implemented
as a combination of devices, e.g., a combination of a digital
signal processor and a microprocessor, a plurality of micro-
processors, one or more microprocessors in conjunction
with a digital signal processor core, or any other such
configuration.

The ROM 104 and the flash memory 108 may be used to
store computer-executable program code that represents or
defines the various software modules for the ECU 100. The
ROM 104 may be used in some embodiments where the
software modules stored therein need not be updated or
revised. For example, the ROM 104 may be utilized to store
program code that defines an operating system, a boot
loader, or a BIOS for the ECU 100. In contrast, the software
modules stored in the flash memory 108 are subject to
re-programming (reflashing) as needed. Indeed, the re-pro-
gramming methodology described below can be performed
to write new software modules to the flash memory 108. The
RAM 106 serves as temporary data storage for the micro-
processor 102. In this regard, the microprocessor 102 can
write to and read from the RAM 106 as needed to support
the operation of the ECU 100.

The input/output module 110 may be realized with soft-
ware, firmware, hardware, processing logic, or any combi-
nation thereof. The input/output module 110 may be respon-
sible for collecting sensor data, issuing control commands or
instructions, and the like. The communication module 112
may also be realized using software, firmware, hardware,
processing logic, or any suitable combination thereof. In
certain exemplary embodiments, the communication mod-
ule 112 is suitably configured to support data communica-
tion between the ECU 100 and other modules, ECUs, or
devices onboard the host vehicle. The communication mod-
ule 112 may also be designed to support data communication
with external devices or sources. For example, the commu-
nication module 112 may include or cooperate with a port or
an interface that accommodates wired or wireless connec-
tion with an external computing device, such as a laptop
computer or a vehicle diagnostics system. As another
example, the communication module 112 may support cel-
lular data communication, satellite data communication, or
the like.

As mentioned above, an efficient and quick re-program-
ming methodology can be used to reflash a flash memory
element of an ECU. In this regard, FIG. 2 is a diagram of a
flash memory element 200 that is already programmed with
existing software modules. For this particular example, the
flash memory element 200 is divided into nine flash sectors
(depicted as horizontally arranged rectangles), although an
embodiment of the flash memory element 200 may include
any number of flash sectors as appropriate for the particular
application, platform, and ECU functionality. The dark
shading in FIG. 2 indicates that all nine of the flash sectors
have already been written with program code. As used
herein, a “flash sector” represents an erasable portion of
memory. In accordance with conventional flash memory
technology, data is erased on a sector-by-sector basis; all the
memory cells in a flash sector must be erased together. In
certain embodiments, the flash memory element 200 is
divided into flash sectors of the same size (e.g., 8 kB, 64 kB,

20

25

40

45

6

or 256 kB per sector). In other embodiments, the flash
memory element 200 may be divided into flash sectors of
more than one size.

The flash memory element 200 can be programmed with
any number of software modules (i.e., pieces of computer-
executable program code), depending on the overall capac-
ity of the flash memory element 200, the individual sizes of
the software modules, and possibly other factors. The non-
limiting and simple example described here assumes that the
flash memory element 200 is used to store an application
software module 202, a first program calibration module 204
that is associated with the application software module 202,
and a second program calibration module 206 that is also
associated with the application software module 202. As
depicted in FIG. 2, the application software module 202
occupies four of the nine flash sectors, the first program
calibration module 204 occupies three of the nine flash
sectors, and the second program calibration module 206
occupies the remaining two of the nine flash sectors. The
particular arrangement and allocation of flash sectors shown
in FIG. 2 are merely intended to serve as one simple
example. In practice, the number of flash sectors assigned to
each software module can vary as needed to accommodate
the actual size of the module. Accordingly, one or more flash
sectors may be used to store the program code for each
software module of the ECU.

FIG. 3 is a diagram of the flash memory element 200
during a reflashing operation, FIG. 4 is a diagram of the flash
memory element 200 near the end of the reflashing opera-
tion, and FIG. 5 is a diagram of the flash memory element
200 after completion of the reflashing operation. The pro-
gression depicted in FIGS. 2-5 will be explained in more
detail below with reference to FIG. 7.

FIG. 6 is a flow chart that illustrates an exemplary
embodiment of an initialization process 600 associated with
a flash re-programming operation. The various tasks per-
formed in connection with the process 600 may be per-
formed by software, hardware, firmware, or any combina-
tion thereof. The process 600 (or portions thereof) may be
performed by the ECU (e.g., by the boot loader) and/or by
another subsystem or device onboard the host vehicle.
Alternatively, some or all of the process 600 could be
performed by a subsystem or service that is external to the
host vehicle, such as an external computing device, diag-
nostic equipment, or a cloud-based software updating ser-
vice. It should be appreciated that the process 600 may
include any number of additional or alternative tasks, the
tasks shown in FIG. 6 need not be performed in the
illustrated order, and the process 600 may be incorporated
into a more comprehensive procedure or process having
additional functionality not described in detail herein. More-
over, one or more of the tasks shown in FIG. 6 could be
omitted from an embodiment of the process 600 as long as
the intended overall functionality remains intact.

The process 600 assumes that the flash memory has
already been programmed and, therefore, has existing soft-
ware modules resident in at least some of its flash sectors. In
accordance with this example, the process 600 obtains a
software update package for the ECU (task 602). The update
package may be obtained from any authorized source, and it
may be delivered to the ECU in any practical format. For
example, the update package may be obtained over the air
from an external source to update the existing software
image of the flash memory. The software update package
contains the information and data that is needed to re-
program the flash memory in the manner specified herein. In
this regard, the software update package may include, with-



US 9,430,220 B2

7

out limitation: an identifier or address of the target ECU; at
least one delta program file to be used during delta pro-
gramming of one or more software modules; and new
program code to be used during non-delta programming of
one or more software modules. The delta program file (or
files) represents the difference between an existing set of
software modules (i.e., one or more modules) that currently
resides in the flash memory, and the “updated” or “new”
version of that set of software modules. Notably, the delta
program file(s) only refers to those software modules that
are to be re-programmed using the delta programming
technique. In contrast, the additional new program code
represents the “updated” or “new” version of a set of
software modules that are to be re-programmed using a
traditional (non-delta) programming approach. Thus, the
new program code may represent an updated software
module in its entirety, as a compressed or non-compressed
image.

It should be appreciated that a plurality of delta program
files could be provided for purposes of updating application
software and/or calibration data. Moreover, any number of
software modules could be programmed using a traditional
non-delta programming technique. For example, with refer-
ence to FIG. 2, the application software module 202 could
be updated using a single delta program file, and the flash
sectors 220, 222, 224 (used for the program calibration
module 204) could be updated using a plurality of delta
program files. Similarly, the flash sectors 210, 212 (used for
the calibration module 206) could be updated using one or
more delta program files. These examples are not intended
to be limiting or otherwise restrictive of the technology
described here. Rather, the process 600 can be flexibly
designed to handle the updated software content regardless
of the delivery mechanism.

The process 600 identifies the set of software modules to
be programmed by delta programming (task 604), and
identifies the set of software modules to be programmed by
non-delta programming (task 606). Referring again to FIG.
2, the example described here assumes that the application
software module 202 and the first program calibration
module 204 will be reflashed by a delta programming
technique, and that the second program calibration module
206 will be reflashed by a non-delta (traditional) program-
ming technique. The process 600 assigns a first set of sectors
(i.e., one or more) of the flash memory for purposes of delta
programming, and assigns a second set of sectors (i.e., one
or more) of the flash memory for purposes of non-delta
programming (task 608). For the example shown in FIG. 2:
the upper four flash sectors are assigned for delta program-
ming of the application software module 202; the fifth, sixth,
and seventh flash sectors are assigned for delta programming
of the first program calibration module 204; and the lower
two flash sectors are assigned for non-delta programming of
the second program calibration module 206.

In conjunction with the assignment of sectors (task 608),
the process 600 may also determine the maximum sector
size to be programmed using the delta programming tech-
nique (task 610). This determination is important to enable
the process 600 to allocate an amount of the flash memory
equal to at least the maximum sector size for use as
temporary backup memory space. If different sector sizes are
used in the flash memory, then more than one sector may
need to be designated for use as the temporary backup
memory space. This practical requirement ensures that the
existing (old) content of the largest sector can be saved in the
temporary backup memory space as a failsafe measure
during the delta programming.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

In this manner, the process 600 allocates and designates at
least some of the sectors to be used during the non-delta
programming as the temporary backup memory space (task
612). For the flash memory element 200 depicted in FIG. 2,
this example reserves the lower two flash sectors for use as
the temporary backup memory space. In other words, the
sectors used for the existing version of the second program
calibration module 206 are designated for use as buffer
memory during the delta programming of the application
software module 202 and the first program calibration
module 204. It should be understood that some or all of the
tasks described above for the initialization process 600 could
be performed “automatically” or otherwise in conjunction
with the re-programming of the flash memory. The process
600 is described here for ease of understanding and to
explain the manner in which the flash sectors are allocated
and utilized.

FIG. 7 is a flow chart that illustrates an exemplary
embodiment of a flash re-programming process 700. The
various tasks performed in connection with the process 700
may be performed by software, hardware, firmware, or any
combination thereof. The process 700 (or portions thereof)
may be performed by the ECU (e.g., by the boot loader) to
replace existing program code with updated or new program
code. It should be appreciated that the process 700 may
include any number of additional or alternative tasks, the
tasks shown in FIG. 7 need not be performed in the
illustrated order, and the process 700 may be incorporated
into a more comprehensive procedure or process having
additional functionality not described in detail herein. More-
over, one or more of the tasks shown in FIG. 7 could be
omitted from an embodiment of the process 700 as long as
the intended overall functionality remains intact.

This example assumes that a flash memory element needs
to be reflashed with at least two software modules, such that
the first module can be reflashed using a delta programming
technique and the second module can be reflashed in a
traditional “complete program code” manner. Thus, the
process 700 may begin by obtaining the delta program file
that is needed to accomplish the delta programming phase
(task 702). As mentioned above, the delta program file may
be downloaded over the air, obtained from an external
computing device, or the like. The process 700 may continue
by initiating delta programming of the first software module
(task 704). Although the specific location of the flash sectors
used for programming the first software module may vary
from one embodiment to another, the example illustrated in
FIGS. 2-5 uses the upper four flash sectors for this purpose.

To support a failsafe programming operation, the process
700 saves or copies at least some of the program code of the
existing version of the first software module to the flash
sectors that have been designated for use as the temporary
backup memory space (task 706). In addition, the delta
program file is used re-program the sectors that are assigned
to the first software module (task 708). Referring to FIG. 3,
the two flash sectors 210, 212 are used as the temporary
backup memory space during the delta programming phase.
Consequently, the original version of the second program
calibration module 206 is erased from the flash sectors 210,
212. In accordance with the exemplary embodiment
described here, delta programming is performed on a sector-
by-sector basis. Thus, the existing content (program code for
the software module being reflashed) in one flash sector is
copied to the temporary backup memory space before that
flash sector is erased and re-programmed with the new
program code. This failsafe technique ensures that the old
program code for each flash sector is preserved in a recov-



US 9,430,220 B2

9

erable form. After successtully reflashing a sector, the con-
tent of the temporary backup memory space can be erased as
needed.

FIG. 3 is a diagram of the flash memory element 200 after
the application software module 202 has been successfully
re-programmed into a new version of the application soft-
ware module 202' (the prime notation indicates a reflashed
version). As mentioned above, the application software
module 202 is re-programmed one sector at a time, using the
delta program file and the temporary backup memory space
as needed. FIG. 3 depicts a moment in time when the
existing version of the first program calibration module 204
still resides in the three flash sectors 220, 222, 224.

Referring back to FIG. 7, if the delta programming phase
is done (the “Yes” branch of query task 710), then the
process 700 continues to the non-delta programming phase.
If, however, more software modules are to be reflashed using
the delta programming technique (the “No” branch of query
task 710), then the process 700 may return to task 704 to
initiate and perform delta programming on the next software
module in the manner described above. This example
assumes that delta programming is repeated as needed until
all of the software modules designated for delta program-
ming have been reflashed. In this regard, FIG. 4 shows the
flash memory element 200 after the first program calibration
module 204 has been successfully re-programmed into a
new version of the first program calibration module 204'. At
the point in time depicted in FIG. 4, the two flash sectors
210, 212 may be void of content (i.e., erased) or they may
contain backup program code saved during the last delta
programming iteration. In other words, the flash sectors 210,
212 have not yet been re-programmed with the desired new
program code.

After completion of the delta programming phase, the
process 700 obtains the new program code (e.g., a com-
pressed file or a non-compressed file) for reflashing one or
more final software modules (task 712). This example
assumes that only one software module remains for non-
delta programming, namely, the second program calibration
module 206 (see FIG. 2). In contrast to a delta program file
that is used for delta programming, the obtained program
code file is a full version of the software needed to com-
pletely define the final software module(s). The process 700
may continue by initiating non-delta programming of the
last software module (task 714). Although the specific
location of the flash sectors used for programming the last
software module may vary from one embodiment to another,
the example illustrated in FIGS. 2-5 uses the lowermost flash
sectors for this purpose.

In accordance with the non-delta reflashing technique, the
flash sectors that had been used as the temporary backup
memory space are programmed with the new program code
to implement the last software module (task 716). The new
program code need not be copied for failsafe purposes
because a traditional non-delta approach is used to write the
new program code into the flash memory. For the example
presented here, the existing or old program code (that was
previously stored in the flash sectors 210, 212) is replaced
with the program code for the second program calibration
module. FIG. 5 shows the flash memory element 200 after
the second program calibration module 206 has been suc-
cessfully re-programmed into a new version of the second
program calibration module 206'. FIG. 5 depicts the flash
memory element 200 after successful reflashing. Notably,
the lower two flash sectors are no longer needed or used as
temporary backup memory because the delta programming
phase has already been executed. Accordingly, the lower two

5

10

15

20

25

30

35

40

45

50

55

60

65

10

flash sectors now contain program code associated with the
second program calibration module.

The example presented above assumes that the delta
programming phase is performed and completed before the
non-delta programming phase. In certain embodiments,
however, the flash memory element can be re-programmed
in different ways. For example, it may be desirable in some
situations to reflash one or more modules in a traditional way
before initiating the delta programming phase. As another
example, it may be desirable to alternate between multiple
delta and non-delta programming phases, ending with a
non-delta programming phase. These and other variations
are contemplated by this disclosure.

While at least one exemplary embodiment has been
presented in the foregoing detailed description, it should be
appreciated that a vast number of variations exist. It should
also be appreciated that the exemplary embodiment or
embodiments described herein are not intended to limit the
scope, applicability, or configuration of the claimed subject
matter in any way. Rather, the foregoing detailed description
will provide those skilled in the art with a convenient road
map for implementing the described embodiment or
embodiments. It should be understood that various changes
can be made in the function and arrangement of elements
without departing from the scope defined by the claims,
which includes known equivalents and foreseeable equiva-
lents at the time of filing this patent application.

What is claimed is:

1. A method of re-programming flash memory of a
computing device with software content comprising a plu-
rality of software modules, the method comprising:

identifying, from the plurality of software modules, a first

set of software modules to be programmed by delta
programming and a second set of software modules to
be programmed by non-delta programming;

assigning a first set of sectors of the flash memory for

re-programming with the first set of software modules
using delta programming, and a second set of sectors of
the flash memory for re-programming with the second
set of software modules using non-delta programming,
wherein each of the first set of sectors and the second
set of sectors is already programmed with existing
software modules;

determining a maximum sector size to be programmed

using delta programming;

designating at least some of the second set of sectors as

temporary backup memory space, wherein the desig-
nating includes allocating an amount of the flash
memory equal to at least the maximum sector size for
use as the temporary backup memory space;

copying at least some program code of the existing

software modules from the first set of sectors to the
designated temporary backup memory space;

after the copying, re-programming the first set of sectors

with the first set of software modules, using delta
programming and using the designated temporary
backup memory space to preserve the copied program
code of the existing software modules in a recoverable
form during the re-programming of the first set of
sectors; and

after re-programming the first set of sectors, re-program-

ming the second set of sectors with the second set of
software modules, using non-delta programming,
wherein re-programming the second set of sectors
replaces the copied program code of the existing soft-
ware modules with new program code that represents
the second set of software modules.



US 9,430,220 B2

11

2. The method of claim 1, further comprising:

obtaining a delta program file that represents a difference
between an existing set of software modules in the first
set of sectors and the first set of software modules,
wherein re-programming the first set of sectors uses the
delta program file.

3. The method of claim 1, wherein:

the computing device is an electronic control unit of a

vehicle; and

the plurality of software modules comprises an applica-

tion software module and a program calibration module
associated with the application software module.

4. A non-transitory computer readable medium having
computer executable instructions stored thereon and capable
of performing a method when executed by a processor, the
method comprising:

identifying, from a plurality of software modules, a first

set of software modules to be programmed into a flash
memory by delta programming and a second set of
software modules to be programmed into the flash
memory by non-delta programming;

assigning a first set of sectors of the flash memory for

re-programming with the first set of software modules
using delta programming, and a second set of sectors of
the flash memory for re-programming with the second
set of software modules using non-delta programming,
wherein each of the first set of sectors and the second
set of sectors is already programmed with existing
software modules;

determining a maximum sector size to be programmed

using delta programming;

designating at least some of the second set of sectors as

temporary backup memory space, wherein the desig-
nating includes allocating an amount of the flash
memory equal to at least the maximum sector size for
use as the temporary backup memory space;

copying at least some program code of the existing

software modules from the first set of sectors to the
designated temporary backup memory space;

after the copying, re-programming the first set of sectors

with the first set of software modules, using delta
programming and using the designated temporary
backup memory space to preserve the copied program
code of the existing software modules in a recoverable
form during the re-programming of the first set of
sectors; and

after re-programming the first set of sectors, re-program-

ming the second set of sectors with the second set of
software modules, using non-delta programming,
wherein re-programming the second set of sectors
replaces the copied program code of the existing soft-
ware modules with new program code that represents
the second set of software modules.

5. The computer readable medium of claim 4, wherein the
method performed by the computer-executable instructions
further comprises:

obtaining a delta program file that represents a difference

between an existing set of software modules in the first
set of sectors and the first set of software modules,
wherein re-programming the first set of sectors uses the
delta program file.

6. The computer readable medium of claim 4, wherein the
plurality of software modules comprises an application
software module and a program calibration module associ-
ated with the application software module.

10

30

40

45

12

7. An electronic control unit for a vehicle, the electronic
control unit comprising:

a processor architecture having at least one processor

device;

a flash memory to store program code representing a

plurality of software modules; and

computer readable media having computer-executable

instructions stored thereon that, when executed by the

processor architecture, cause the electronic control unit

to:

initiate re-programming of the flash memory with a first
software module and a second software module;

obtain a delta program file associated with the first
software module;

assign a first set of sectors of the flash memory for
re-programming with the first software module using
delta programming, and a second set of sectors of the
flash memory for re-programming with the second
software module using non-delta programming,
wherein each of the first set of sectors and the second
set of sectors is already programmed with existing
software modules;

determining a maximum sector size to be programmed
using delta programming;

designating at least some of the second set of sectors as
temporary backup memory space, wherein the des-
ignating includes allocating an amount of the flash
memory equal to at least the maximum sector size
for use as the temporary backup memory space;

copy program code of the existing software modules
from the first set of sectors to the second set of
sectors;

after the copying, delta program the first set of sectors
of the flash memory with the first software module,
using the delta program file and using the second set
of sectors as the temporary backup memory space to
preserve the copied program code of the existing
software modules in a recoverable form during delta
programming of the first set of sectors; and

after delta programming the first set of sectors, program
the second set of sectors with the second software
module, using non-delta programming, wherein pro-
gramming the second set of sectors replaces the
copied program code of the existing software mod-
ules with new program code that represents the
second software module.

8. The electronic control unit of claim 7, wherein:

the first software module comprises an application soft-

ware module; and

the second software module comprises a calibration mod-

ule associated with the application software module.

9. The electronic control module of claim 7, wherein the
delta program file is obtained from an external source to
update an existing software image of the flash memory.

10. The electronic control module of claim 9, wherein the
delta program file represents a difference between the exist-
ing software image and the first software module.

11. The electronic control module of claim 7, wherein the
computer-executable instructions cause the electronic con-
trol unit to:

obtain program code that represents the second software

module in its entirety, wherein the program code is used
during the non-delta programming.

12. The electronic control module of claim 11, wherein
the obtained program code comprises a compressed image.

#* #* #* #* #*



